

University of Pretoria Yearbook 2022

Electromagnetic compatibility 310 (EME 310)

Qualification	Undergraduate
Faculty	Faculty of Engineering, Built Environment and Information Technology
Module credits	16.00
NQF Level	07
Programmes	BEng (Computer Engineering)
	BEng (Computer Engineering) ENGAGE
Prerequisites	No prerequisites.
Contact time	1 practical per week, 1 tutorial per week, 3 lectures per week
Language of tuition	Module is presented in English
Department	Electrical, Electronic and Computer Engineering
Period of presentation	Semester 1

Module content

The module is aimed at providing computer engineering students with a background in electromagnetism and electromagnetic compatibility. Introduction: nature of electric and magnetic fields, electromagnetic spectrum, complex numbers and phasors, coordinate systems (cartesian, cylindrical, spherical). Transmission lines: lumped element model, transmission line equations, travelling versus standing waves, lossless lines, input impedance, short and open-circuited and $\lambda/4$ lines, power flow, transients on transmission lines, S-parameters. Electrodynamic fields: Maxwell's equations, plane waves in unbounded media, power density, plane waves normally incident on an interface between materials, Faraday's law. Antennas: impedance, radiation patterns, directivity, gain. Electromagnetic compatibility (EMC): sources of interference, non-ideal behaviour of passive circuit elements, EMC effects of digital signals, grounding techniques, good printed circuit layout practice, farfield shielding, power supply decoupling, ground loops, differential mode and common mode radiation, cable shielding.

The regulations and rules for the degrees published here are subject to change and may be amended after the publication of this information.

The General Academic Regulations (G Regulations) and General Student Rules apply to all faculties and registered students of the University, as well as all prospective students who have accepted an offer of a place at the University of Pretoria. On registering for a programme, the student bears the responsibility of ensuring that they familiarise themselves with the General Academic Regulations applicable to their registration, as well as the relevant faculty-specific and programme-specific regulations and information as stipulated in the relevant yearbook. Ignorance concerning these regulations will not be accepted as an excuse for any transgression, or basis for an exception to any of the aforementioned regulations.